Class: OCI::AiLanguage::Models::TextClassificationModelMetrics

Inherits:
Object
  • Object
show all
Defined in:
lib/oci/ai_language/models/text_classification_model_metrics.rb

Overview

Model level text classification metrics

Instance Attribute Summary collapse

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(attributes = {}) ⇒ TextClassificationModelMetrics

Initializes the object

Parameters:

  • attributes (Hash) (defaults to: {})

    Model attributes in the form of hash

Options Hash (attributes):

  • :accuracy (Float)

    The value to assign to the #accuracy property

  • :micro_f1 (Float)

    The value to assign to the #micro_f1 property

  • :micro_precision (Float)

    The value to assign to the #micro_precision property

  • :micro_recall (Float)

    The value to assign to the #micro_recall property

  • :macro_f1 (Float)

    The value to assign to the #macro_f1 property

  • :macro_precision (Float)

    The value to assign to the #macro_precision property

  • :macro_recall (Float)

    The value to assign to the #macro_recall property

  • :weighted_f1 (Float)

    The value to assign to the #weighted_f1 property

  • :weighted_precision (Float)

    The value to assign to the #weighted_precision property

  • :weighted_recall (Float)

    The value to assign to the #weighted_recall property



103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 103

def initialize(attributes = {})
  return unless attributes.is_a?(Hash)

  # convert string to symbol for hash key
  attributes = attributes.each_with_object({}) { |(k, v), h| h[k.to_sym] = v }

  self.accuracy = attributes[:'accuracy'] if attributes[:'accuracy']

  self.micro_f1 = attributes[:'microF1'] if attributes[:'microF1']

  raise 'You cannot provide both :microF1 and :micro_f1' if attributes.key?(:'microF1') && attributes.key?(:'micro_f1')

  self.micro_f1 = attributes[:'micro_f1'] if attributes[:'micro_f1']

  self.micro_precision = attributes[:'microPrecision'] if attributes[:'microPrecision']

  raise 'You cannot provide both :microPrecision and :micro_precision' if attributes.key?(:'microPrecision') && attributes.key?(:'micro_precision')

  self.micro_precision = attributes[:'micro_precision'] if attributes[:'micro_precision']

  self.micro_recall = attributes[:'microRecall'] if attributes[:'microRecall']

  raise 'You cannot provide both :microRecall and :micro_recall' if attributes.key?(:'microRecall') && attributes.key?(:'micro_recall')

  self.micro_recall = attributes[:'micro_recall'] if attributes[:'micro_recall']

  self.macro_f1 = attributes[:'macroF1'] if attributes[:'macroF1']

  raise 'You cannot provide both :macroF1 and :macro_f1' if attributes.key?(:'macroF1') && attributes.key?(:'macro_f1')

  self.macro_f1 = attributes[:'macro_f1'] if attributes[:'macro_f1']

  self.macro_precision = attributes[:'macroPrecision'] if attributes[:'macroPrecision']

  raise 'You cannot provide both :macroPrecision and :macro_precision' if attributes.key?(:'macroPrecision') && attributes.key?(:'macro_precision')

  self.macro_precision = attributes[:'macro_precision'] if attributes[:'macro_precision']

  self.macro_recall = attributes[:'macroRecall'] if attributes[:'macroRecall']

  raise 'You cannot provide both :macroRecall and :macro_recall' if attributes.key?(:'macroRecall') && attributes.key?(:'macro_recall')

  self.macro_recall = attributes[:'macro_recall'] if attributes[:'macro_recall']

  self.weighted_f1 = attributes[:'weightedF1'] if attributes[:'weightedF1']

  raise 'You cannot provide both :weightedF1 and :weighted_f1' if attributes.key?(:'weightedF1') && attributes.key?(:'weighted_f1')

  self.weighted_f1 = attributes[:'weighted_f1'] if attributes[:'weighted_f1']

  self.weighted_precision = attributes[:'weightedPrecision'] if attributes[:'weightedPrecision']

  raise 'You cannot provide both :weightedPrecision and :weighted_precision' if attributes.key?(:'weightedPrecision') && attributes.key?(:'weighted_precision')

  self.weighted_precision = attributes[:'weighted_precision'] if attributes[:'weighted_precision']

  self.weighted_recall = attributes[:'weightedRecall'] if attributes[:'weightedRecall']

  raise 'You cannot provide both :weightedRecall and :weighted_recall' if attributes.key?(:'weightedRecall') && attributes.key?(:'weighted_recall')

  self.weighted_recall = attributes[:'weighted_recall'] if attributes[:'weighted_recall']
end

Instance Attribute Details

#accuracyFloat

[Required] The fraction of the labels that were correctly recognised .

Returns:

  • (Float)


13
14
15
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 13

def accuracy
  @accuracy
end

#macro_f1Float

[Required] F1-score, is a measure of a modelu2019s accuracy on a dataset

Returns:

  • (Float)


29
30
31
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 29

def macro_f1
  @macro_f1
end

#macro_precisionFloat

[Required] Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)

Returns:

  • (Float)


33
34
35
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 33

def macro_precision
  @macro_precision
end

#macro_recallFloat

[Required] Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.

Returns:

  • (Float)


37
38
39
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 37

def macro_recall
  @macro_recall
end

#micro_f1Float

[Required] F1-score, is a measure of a modelu2019s accuracy on a dataset

Returns:

  • (Float)


17
18
19
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 17

def micro_f1
  @micro_f1
end

#micro_precisionFloat

[Required] Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)

Returns:

  • (Float)


21
22
23
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 21

def micro_precision
  @micro_precision
end

#micro_recallFloat

[Required] Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.

Returns:

  • (Float)


25
26
27
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 25

def micro_recall
  @micro_recall
end

#weighted_f1Float

F1-score, is a measure of a modelu2019s accuracy on a dataset

Returns:

  • (Float)


41
42
43
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 41

def weighted_f1
  @weighted_f1
end

#weighted_precisionFloat

Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)

Returns:

  • (Float)


45
46
47
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 45

def weighted_precision
  @weighted_precision
end

#weighted_recallFloat

Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.

Returns:

  • (Float)


49
50
51
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 49

def weighted_recall
  @weighted_recall
end

Class Method Details

.attribute_mapObject

Attribute mapping from ruby-style variable name to JSON key.



52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 52

def self.attribute_map
  {
    # rubocop:disable Style/SymbolLiteral
    'accuracy': :'accuracy',
    'micro_f1': :'microF1',
    'micro_precision': :'microPrecision',
    'micro_recall': :'microRecall',
    'macro_f1': :'macroF1',
    'macro_precision': :'macroPrecision',
    'macro_recall': :'macroRecall',
    'weighted_f1': :'weightedF1',
    'weighted_precision': :'weightedPrecision',
    'weighted_recall': :'weightedRecall'
    # rubocop:enable Style/SymbolLiteral
  }
end

.swagger_typesObject

Attribute type mapping.



70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 70

def self.swagger_types
  {
    # rubocop:disable Style/SymbolLiteral
    'accuracy': :'Float',
    'micro_f1': :'Float',
    'micro_precision': :'Float',
    'micro_recall': :'Float',
    'macro_f1': :'Float',
    'macro_precision': :'Float',
    'macro_recall': :'Float',
    'weighted_f1': :'Float',
    'weighted_precision': :'Float',
    'weighted_recall': :'Float'
    # rubocop:enable Style/SymbolLiteral
  }
end

Instance Method Details

#==(other) ⇒ Object

Checks equality by comparing each attribute.

Parameters:

  • other (Object)

    the other object to be compared



173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 173

def ==(other)
  return true if equal?(other)

  self.class == other.class &&
    accuracy == other.accuracy &&
    micro_f1 == other.micro_f1 &&
    micro_precision == other.micro_precision &&
    micro_recall == other.micro_recall &&
    macro_f1 == other.macro_f1 &&
    macro_precision == other.macro_precision &&
    macro_recall == other.macro_recall &&
    weighted_f1 == other.weighted_f1 &&
    weighted_precision == other.weighted_precision &&
    weighted_recall == other.weighted_recall
end

#build_from_hash(attributes) ⇒ Object

Builds the object from hash

Parameters:

  • attributes (Hash)

    Model attributes in the form of hash

Returns:

  • (Object)

    Returns the model itself



212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 212

def build_from_hash(attributes)
  return nil unless attributes.is_a?(Hash)

  self.class.swagger_types.each_pair do |key, type|
    if type =~ /^Array<(.*)>/i
      # check to ensure the input is an array given that the the attribute
      # is documented as an array but the input is not
      if attributes[self.class.attribute_map[key]].is_a?(Array)
        public_method("#{key}=").call(
          attributes[self.class.attribute_map[key]]
            .map { |v| OCI::Internal::Util.convert_to_type(Regexp.last_match(1), v) }
        )
      end
    elsif !attributes[self.class.attribute_map[key]].nil?
      public_method("#{key}=").call(
        OCI::Internal::Util.convert_to_type(type, attributes[self.class.attribute_map[key]])
      )
    end
    # or else data not found in attributes(hash), not an issue as the data can be optional
  end

  self
end

#eql?(other) ⇒ Boolean

Parameters:

  • other (Object)

    the other object to be compared

Returns:

  • (Boolean)

See Also:

  • `==` method


192
193
194
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 192

def eql?(other)
  self == other
end

#hashFixnum

Calculates hash code according to all attributes.

Returns:

  • (Fixnum)

    Hash code



201
202
203
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 201

def hash
  [accuracy, micro_f1, micro_precision, micro_recall, macro_f1, macro_precision, macro_recall, weighted_f1, weighted_precision, weighted_recall].hash
end

#to_hashHash

Returns the object in the form of hash

Returns:

  • (Hash)

    Returns the object in the form of hash



245
246
247
248
249
250
251
252
253
254
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 245

def to_hash
  hash = {}
  self.class.attribute_map.each_pair do |attr, param|
    value = public_method(attr).call
    next if value.nil? && !instance_variable_defined?("@#{attr}")

    hash[param] = _to_hash(value)
  end
  hash
end

#to_sString

Returns the string representation of the object

Returns:

  • (String)

    String presentation of the object



239
240
241
# File 'lib/oci/ai_language/models/text_classification_model_metrics.rb', line 239

def to_s
  to_hash.to_s
end