mlm_insights.core.execution_engine.interfaces package¶
Submodules¶
mlm_insights.core.execution_engine.interfaces.execute_engine module¶
- class mlm_insights.core.execution_engine.interfaces.execute_engine.ExecutionEngine(engine_type: str)¶
- Bases: - ABC- Abstract Base Class for Execution engine functionality. - This can be implemented for different execution engines like ‘dask’, ‘spark’ for engine specific configurations. - classmethod create_client(engine_detail: EngineDetail, **kwargs: Any) Any¶
- Factory Method to create engine specific client. - Parameters¶- engine_detail: EngineDetail
- Engine Detail object can hold Any type like ‘dask’, ‘spark’ as string 
 - Returns¶- Any
- Engine specific Client 
 
 - engine_type: str = 'native'¶
 - get_schema_provider(input_schema: Dict[str, FeatureType]) SchemaProvider¶
- Method to convert engine specific schema using user schema. - Parameters¶- input_schema: Dict[str, FeatureType]
- key-value pair - key: attribute name from data set - value: attribute data type and variable type 
 - Returns¶- SchemaProvider
- Engine specific schema 
 
 - parse_data_frame_result(profile_dataframe: DataFrame) Profile¶
- Method to parse the profile dataframe based on different Execution engines. - As Spark converts to a bytearray whereas Dask provides a byte string, we need to handle this distinction between different Execution engines. - Parameters¶- profile_dataframe: DataFrame
- pandas profile dataframe 
 - Returns¶- Profile
- Contains data summary and includes profile header, information about the features, metrics, SFCs.